# Development and Performance of a Scalable Version of a Nonhydrostatic Atmospheric Model

A. A. Mirin and G. Sugiyama
Lawrence Livermore National Laboratory

S. Chen, R. M. Hodur, T. R. Holt, and J. M. Schmidt Naval Research Laboratory

**DoD HPC Users Group Conference 2001** 18-21 June 2001

#### **Outline**

Development and Performance of a Scalable Version of a Nonhydrostatic Model

#### •What is COAMPS?

- Definition
- Operations
- Present and Future Computer Resources
- Development of Scalable COAMPS:
  - Background
  - Organization of Workload
  - Program Structure
  - Pre-processing/Analysis
  - Forecast Model
    - Domain Decomposition
    - Nesting
  - Test Results
- Future Plans and Conclusions

Coupled Ocean/Atmosphere Mesoscale Prediction System: Atmospheric Components

#### Complex Data Quality Control

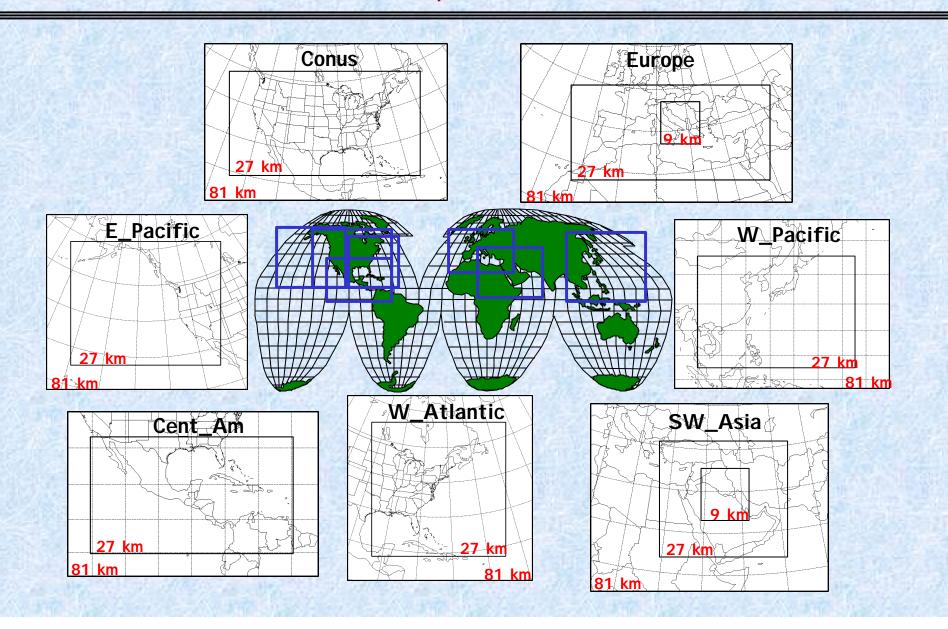
#### •Analysis:

- Multivariate Optimum Interpolation Analysis (MVOI) of Winds and Heights
- Univariate Analyses of Temperature and Moisture
- 2D OI Analysis of Sea Surface Temperature

#### ·Initialization:

- Hydrostatic Constraint on Analysis Increments
- Digital Filter

#### •Atmospheric Model:


- Numerics: Nonhydrostatic, Scheme C, Nested Grids, Sigma-z, Flexible Lateral BCs
- Parameterizations: PBL, Convection, Explicit Moist Physics, Radiation, Surface Layer

#### •Features:

- Globally Relocatable (5 Map Projections)
- User-Defined Grid Resolutions, Dimensions, and Number of Nested Grids
- 6 or 12 Hour Incremental Data Assimilation Cycle
- Can be Used for I dealized or Real-Time Applications
- Single Configuration Managed System for All Applications
- Operational at FNMOC:
  - 7 Areas, Twice Daily, using 81/27/9 km or 81/27 km grids
  - Forecasts to 72 hours
- Operational at all Navy Regional Centers (w/GUI Interface)

#### **COAMPS Operational Areas at FNMOC**

As of September 8, 2000



Coupled Ocean/Atmosphere Mesoscale Prediction System: Ocean Components

#### Data Quality Control

#### •Analysis:

- 2D Multivariate Optimum Interpolation Analysis (MVOI) of Sea Surface Temperature on All Grids
- 3D MVOI Analysis of Temperature, Salinity, Surface Height, Sea Ice, and Currents

#### Ocean Model: Navy Coastal Ocean Model (NCOM)

- Numerics: Hydrostatic, Scheme C, Nested Grids, Hybrid Sigma/z
- Parameterizations: Mellor-Yamada 2.5

#### •Features:

- Globally Relocatable (5 Map Projections)
- User-Defined Grid Resolutions, Dimensions
- Can be Used for I dealized or Real-Time Applications
- Single Configuration Managed System for All Applications
- Loosely coupled to COAMPS atmospheric model

#### **Present and Future Computer Resources**

#### •Operations at FNMOC:

- Current: Cray c90 [16-processor (1), 8-processor (1)]
- •Sep 2001: SGI o3k [128 processor (1), 512 processor (1)]
- •Operations at Regional Centers: SGI o2k [4-processor (1)]
- •Operations at DoE NARAC: DEC [4-6 processors (1)]; NARAC: National Atmospheric Release Advisory Capability

#### •Research at NRL/DoD HPC Centers:

- •SGI o2k [64-processor (1), 128-processor (3)]
- •SGI o3k [128-processor (1), 256-processor (5)]
- DEC [8-processor (1)]
- IBM [512-processor (1), 1200-processor (1)]
- •Cray T3E [544-processor (1), 1088-processor (1)]
- Cray SV1 [16-processor (4), 24-processor (1)]

#### •Research at LLNL:

- TeraCluster2000 [DEC 512-processor (1)]
- IBM [512-processor (1)]

#### Scalable COAMPS

Background

#### •COAMPS Original Design for Shared Memory Systems:

- 1980's: Cyber 205 [Vectorization]
- 1990's: Multi-Processors (e.g., c90) [Multi-tasking]

#### •New Scalable Architecture for FNMOC/HPC/LLNL:

- Hardware does not support vectorization
- Necessitates new programming model:
  - Node to node communications (Message Passing Interface, MPI)
  - Processor to processor (MPI or OpenMP)

#### •Complications:

- Domain Decomposition:
  - Overhead for developers
  - Complicates "non-local" processes
  - MPI is an evolving standard
- FORTRAN Compilers:
  - Buggy
  - Different options/versions on different platforms
- Few Development Tools (but getting better)

#### **Scalable COAMPS**

Organization of Workload: Joint NRL-LLNL Development

#### •LLNL (Art Mirin, Gayle Sugiyama):

- •Previous experience w/MOM, UCLA GCM
- Focus on: Domain decomposition, Communications
- Availability of DoE hardware: DEC, IBM
- •MOA w/NRL
- •NRL (Jerry Schmidt, Teddy Holt, Sue Chen)
  - Focus on: Physics, I/O, Nesting, Pre-processing, Test suite
  - Availability of HPC hardware: T3E, O2K, IBM
  - Requirements for new FNMOC and HPC hardware

#### •Development on:

- •LLNL: DEC, IBM
- •NAVO: T3E, O2K
- •NRL DC, ARL: O3K
- •FNMOC: O2K

## **COAMPS Program Structure**

**Atmospheric Components** 

# Pre-Processing/Analysis (coama)

- Construct "data" record
- Generate grid information
- Generate surface fields
- Construct SST OI analysis
- Construct atmospheric MVOI analyses\*
- Generate lateral boundary condition data for coamm from NOGAPS fields

# Forecast Model (coamm)

- Merge analysis increments and previous forecast fields
- Initialization
- Model integration\*
- Output:
  - Pressure levels
  - Height levels
  - Surface fields
  - Sigma levels
  - Individual points

\*Most time-consuming portion of job

Pre-processing/Analysis (coama)

#### •Shared Memory Structure:

- Arrays organized in i-, j-, k- structure
- Many i,j loops combined into one i-loop for vectorization
- Cray/SGI multi-tasking instructions for k-loops and MVOI volume loops
- Bicubic splines for staggering and de-staggering winds

#### Distributed Memory Structure:

- Retain shared memory constructs
- •Retain i-, j-, k- structure
- Use OpenMP for k-loops and MVOI volume loops
- Bicubic splines for staggering and de-staggering winds
- SST analysis moved to separate program

Forecast Model (coamm)

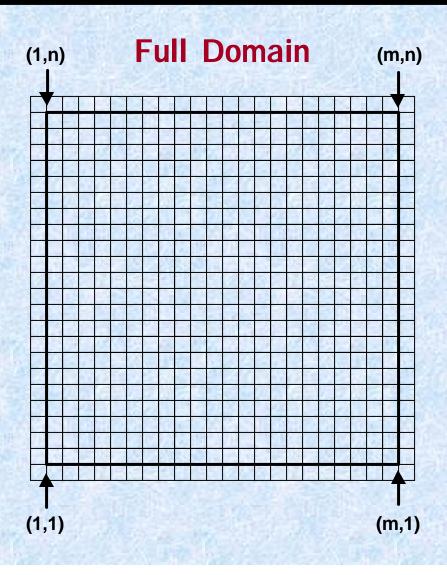
#### •Shared Memory Structure:

- Arrays organized in i-, j-, k- structure
- Many i,j loops combined into one i-loop for vectorization
- Cray/SGI multi-tasking instructions:
  - Outer (k-) loop for dynamics (levels)
  - j-loop for physics (vertical slabs)
- Bicubic splines for staggering and de-staggering winds

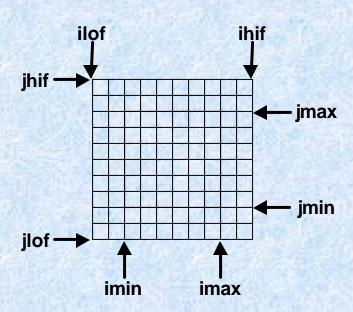
#### Distributed Memory Structure:

- Retain i-, j-, k- structure
- Implement MPI for communications and MPI I/O for output
- Domain decomposition in x-, y- directions (user-defined for each nest)
- Arbitrary number of halo rows/columns (user-defined)
- Allow for OpenMP multi-tasking instructions:
  - Outer (k-) loop for dynamics (levels)
  - j-loop for physics (vertical slabs)
- Retain option for vectorization (i.e., collapsed loops)
- Use bilinear interpolations for staggering/de-staggering winds
- Drop unused code (e.g., simplified physics)

## **Vectorization in COAMPS**


#### ·Scalar Code:

```
do k=1,kk
do j=1,n
do i=1,m
a(i,j,k)=b(i,j,k)*2.0
enddo
enddo
enddo
```


#### •Vector Code:

```
do k=1,kk
do i=1,m*n
a(i,1,k)=b(i,1,k)*2.0
enddo
enddo
```

# COAMPS Domain Decomposition Using 2 Halo Rows



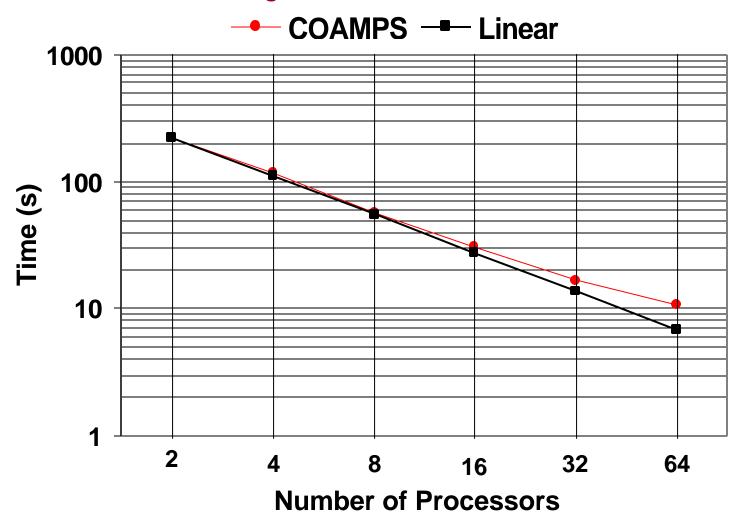
# Sub-domain for one processor



#### **Scalable COAMPS**

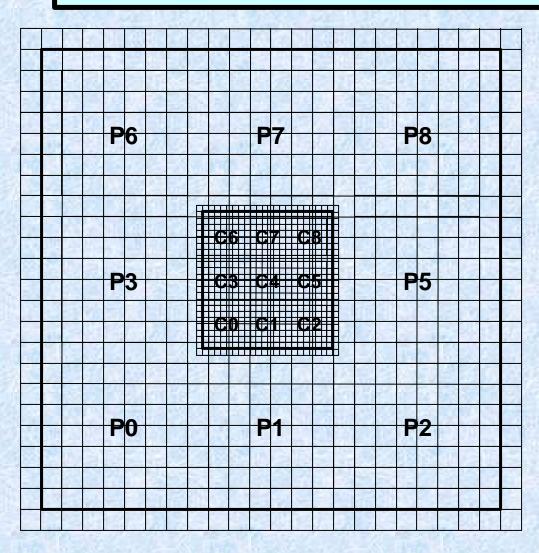
**Initial Tests** 

#### ·I dealized Cases:


- Dry thermal bubble
- Moist baroclinic wave development
- •72 hour forecasts reproduces c90 results exactly

#### •Real Data Cases:

- Forecast for individual cases reproduce c90 results exactly
- •Wall time using 40-processor SGI o2k is 57% of wall-time using 15-processor c90; o3k reduces running time an additional 33%
- Data assimilation:
  - •2 week period
  - Minor differences due to:
    - Different interpolation methods
    - Different filters


Scaling for idealized baroclinic wave development case

COAMPS Scaling on T3E: Grid size: 321 x 81 x 20



#### COAMPS Domain Decomposition for Two Nests

P: Parent (Coarse Mesh) Processors, C: Child (Fine Mesh) Processors



- •Boundary conditions for C0 come from P0, P1, and P3
- Boundary conditions for C1 come from P1
- Boundary conditions for C2 come from P1, P2, and P5
- •These communication rules become much more complicated when the child mesh is not so perfectly aligned with the parent mesh. In general, this is nearly always the case.

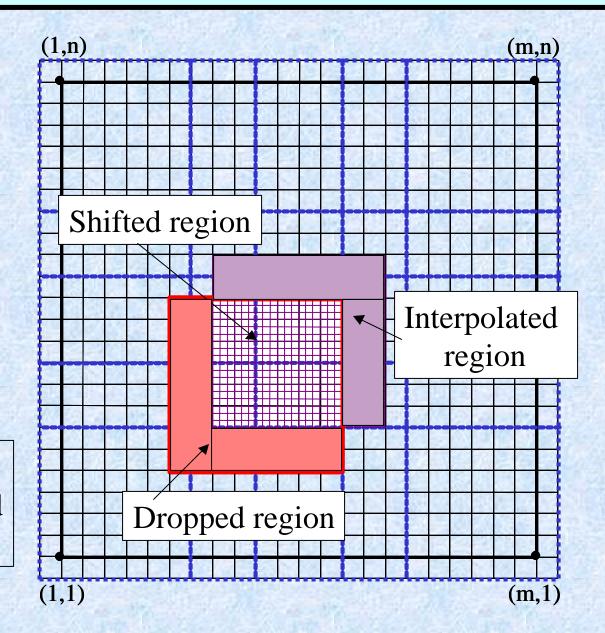
# **COAMPS MPI Moving Nest Software Development**

- Software developed using MPI
- Makes use of existing COAMPS nesting software
- •Advantages:
  - Allows for smaller nests (less resources required)
  - •Flexibility in movement of nests:
    - Namelist specified options:
      - Battle group option ("target" times/locations)
      - User specified grid point movement
    - Nests automatically move together
    - Automated tropical cyclone movement option (under development)

#### **COAMPS MPI Moving Nest Software Development**

#### **Fixed Nest 1:**

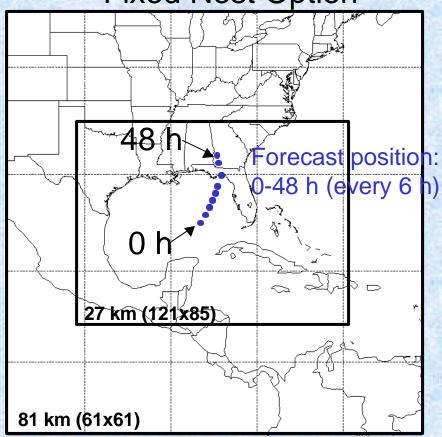
(m x n) points 3 x 3 domain decomposition


2 Halo Points

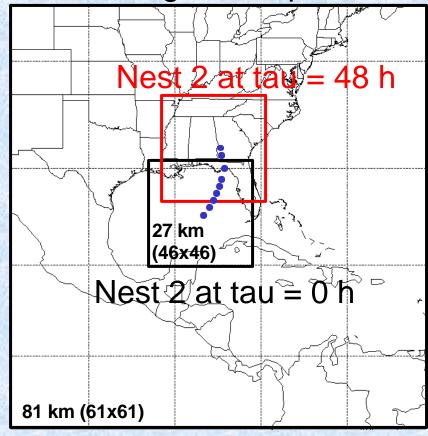
#### **Moveable Nest 2:**

Time = t0

Time = t1

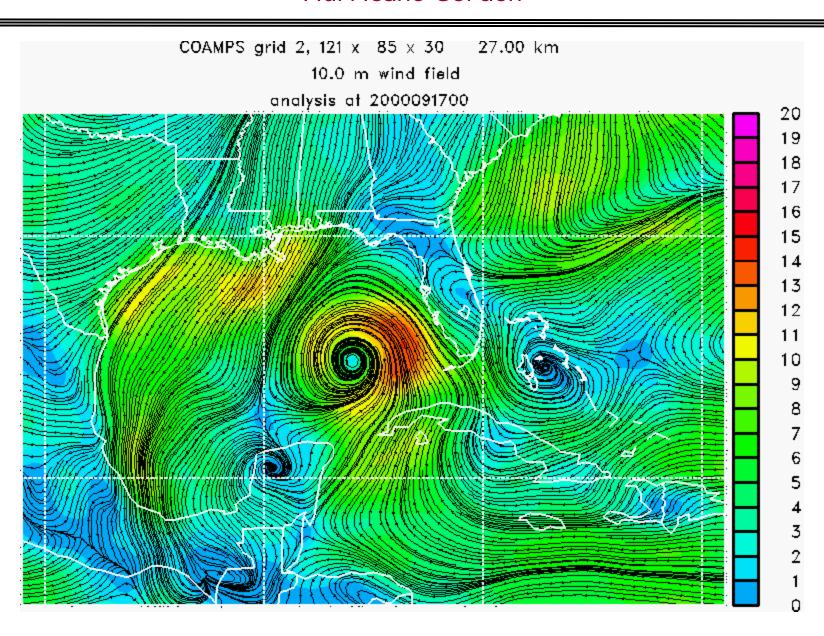

MPI communications needed for shifted and interpolated areas




#### **COAMPS MPI Moving Nests**

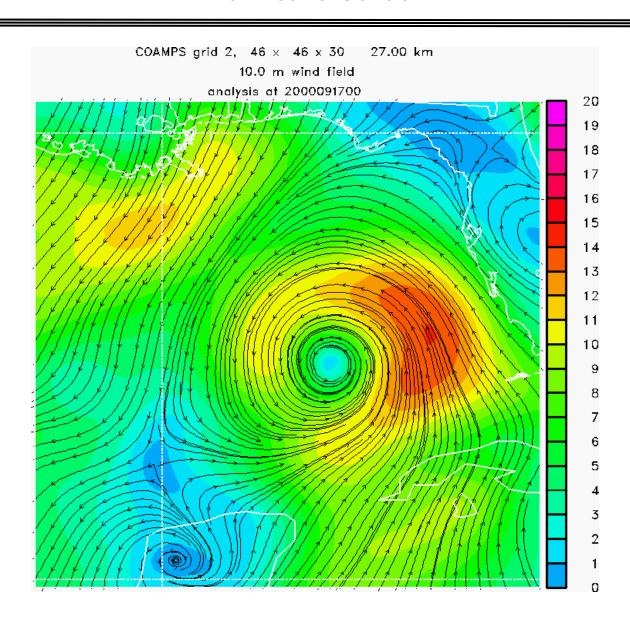
Hurricane Gordon 00Z September 17- 00Z September 19, 2000 Moving Nest Option is 2.7x Faster on O2K

#### **Fixed Nest Option**



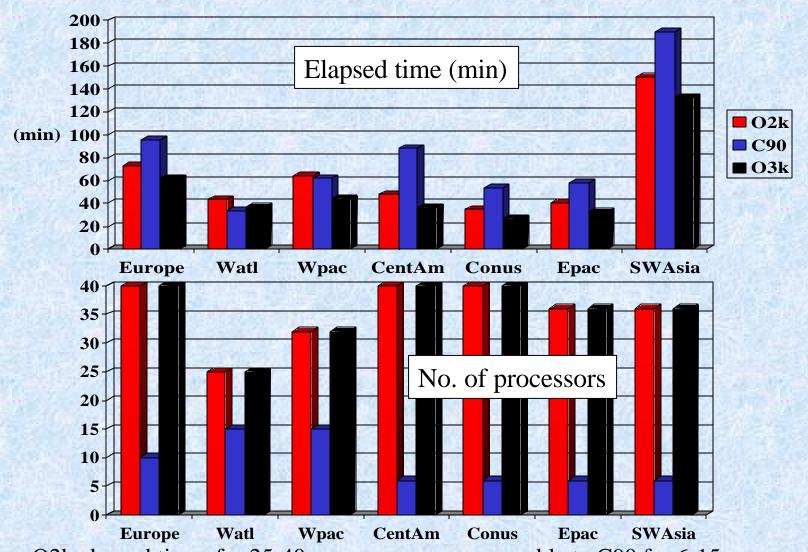

#### **Moving Nest Option**




#### **COAMPS Fixed Nest Animation**

Hurricane Gordon




#### **COAMPS Moving Nest Animation**

**Hurricane Gordon** 



#### Comparison of COAMPS on Cray C90 and SGI O2K

COAMPS 24 h forecasts in an operational/cpuset environment



- O2k elapsed times for 25-40 processors are comparable to C90 for 6-15 processors
- O3k reduces O2k elapsed times by 15-32%

#### Conclusion

Development and Performance of a Scalable Version of a Nonhydrostatic Model

- FNMOC/HPC/LLNL moving to scalable architectures
- Developed scalable version of COAMPS:
  - Successful NRL-LLNL collaboration
  - •MPI and OpenMP use
  - •x-, y- domain decomposition
  - Arbitrary number of halo points
  - Retains options of the shared memory version
  - Allows moving nested grids
- Performance of scalable code:
  - Demonstrated scaling to 60 processors, will test for > 60
  - Outperforms Cray c90/t90
  - Reproduces results of shared memory version
- Shared memory version of COAMPS is frozen
- Scalable code being used for R&D and operations

#### **Future Plans**

#### •In Progress:

- •Efficiency/Optimization:
  - I mproved cache utilization
  - Examination of load imbalance
  - MPI -2 communications (one-way sends)
  - Test vectorization capabilities
- •Validation:
  - Different configurations
  - OpenMP/MPI comparisons across processors
- •Implementation of 3D variational analysis: NRL Atmospheric Variational Data Assimilation System (NAVDAS)
- Scalable code in beta-ops at FNMOC